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Which dynamical features are important?

quilibri: Periodic

Natural World e

AMERICAN FORK
TWIN PEAKS
(1,433/11,489)

Scientific Model

Toy Model




Which dynamical features persist?

Partial Differential
Equation

Ordinary Differential
Equation

Finite time stepping

* Numerical approximations
converge in the limit

— How accurate is a particular computation?
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Temperature field in 2D Rayleigh-Bénard The Lorenz attractor, a 3-mode approx. of Rayleigh-
convection simulations. Image Credit: Doering 2020 Bénard convection. Image Credit: Weady et al. ‘18



Which dynamical features persist?
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The character of transition from laminar to chaotic Rayleigh-Bénard convection in
a fluid layer bounded by free-slip walls is studied numerically in two and three space
dimensions. While the behaviour of finite-mode, limited-spatial-resolution dynamical )
systems may indicate the existence of two-dimensional chaotic solutions, we find that, |/ 0
this chaos is a product of inadequate spatial resolution. It is shown that as the order ° 7 " A . &
of a finite-mode model increases from three (the Lorenz model) to the full Boussinesq x

system, the degree of chaos increases irregularly at first and then abruptly decreases;

F | n |te tl m e Ste p pl n g no strong chaos is observed with sufficiently high resolution. The Lorenz attractor, a 3-

mode approx. of Rayleigh-
Bénard convection. Image
Credit: Weady et al. ‘18
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What is a Computer Assisted Proof?

My Definition: A proof involving computations.
e.g. 109 is prime; 9 < % < 10
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My Definition: A proof involving computations.
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What is a Computer Assisted Proof?

My Definition: A proof involving computations.
e.g. 109 is prime; 9 < % < 10

Is the computer
a human?

Are CAPs O Are CAPs
insightful? p useful?
O o
o 0 O
(o]
° o
(@) (@)
O @

Are computers
reliable?

Are computers
infallible?




Numerics gone awry T =

——y, = 1.0001
20 0 ]
——y, = 1.00001

101

* |n 1963 Edward Lorenz was studying ol
following model for atmospheric
convection
x'=o(y—x) T T e e
y =x(p—z)—y
z' =xy— [z

* Origin of the term ‘Butterfly Effect’
— Sensitive dependance to initial conditions

— Under modern conventions, Ellen Fetter
would have been a co-author

 https://www.guantamagazine.org/the-
hidden-heroines-of-chaos-20190520/



https://www.quantamagazine.org/the-hidden-heroines-of-chaos-20190520/
https://www.quantamagazine.org/the-hidden-heroines-of-chaos-20190520/

nature
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numerics!

nature > news > article

This proof is too
confusing for me.
. . What if there is a
Mathematicians welcome mistake?

computer-assisted proofin ‘grand
unification’ theory

Proof-assistant software handles an abstract concept at the cutting edge of research,
revealing a bigger role for software in mathematics. Where are

NEWS | 18 June 2021

differential equations

Davide Castelvecchi

Yy f = |, for one, welcome
our robot overlords

on the list?

Cardinals
- Topology

Discrete v
mathematics .« *

Category
theory

»~Functional
Linear analysis

algebra
Algebra



Famous Computer Assisted Proofs

* Four Color Theorem

— How many colors are needed so adjacent
countries have different colors on a map?
(1852)

— C.A.P. by Appel & Haken (1976)

* Reduced to ~1,500 possible counter-examples

* The Lorenz system

— Standard model of chaos
* C.A.P. by Mischaikow & Mrozek (1995)
— Smale’s 14™ problem for the 215t century

* Does the Lorenz attractor match the geometric
model?

* C.A.P. by Tucker (2002)




Easy Part: living with rounding error

. Computers have finite memory Examples
- Interval arithmetic o
11,2] + [3,4] = [4,6]
— Define real intervals as -
IR ={[a,b)] SR:a<bh) [1.2] = [34] = [-3,—1]
— Define operations x € {+,—,%,/} as [1]/[3] € [ 0.33,0.34]
AxB={a*xpB:a€APpEB} me[3.1,3.2]
2 € [9.61,10.24]




fx)=x>—x+1

«_Goal: Solve f(x) =0

ThegidiHer irermputen assistgd
prop)y Ehere, exipts-4-unique+[€ 1]
[—2, —1]=suieB2hat JF£2,3] 0.

= [—30,Z] ,
 Use intermediate value theoremto s /\
show that a solution exists ’
c f(-2)=-29<0 ,
70 Sl
* f(-1)= +1>0 |
* Uniqueness
« f'(D=1[4 79]>0




fx)=x>—-x+1

Theorem (with computer assisted
proof): There exists a unique X €
|—2,—1] such that f(x¥) = 0.

Corollary: There exists a unigue ¥ € R
such that f(x) = 0. 10
Proof: Divide and conquer




Newton’s method: x,,.; = x, — f'(x,)"1f (x,)

g




Newton’s method: x,,.; = x, — f'(x,)"1f (x,)

1




Newton’s method: x,,.; = x, — f'(x,)"1f (x,)

f(xo) =1

g




Newton’s method: x,,.; = x, — f'(x,)"1f (x,)

g




Newton’s method:

1

Xn+1 = Xn — f,(xn)_lf(xn)

X1=—1.25 /
! | ! ... ! ! L | L ! T

-1.1 -1.0



Newton’s method:

1

Xn+1 = Xn — f’(xn)_lf(xn)

f(x;) = —0.8015



Newton’s method: x,,.; = x, — f'(x,)"1f (x,)

’

1




Newton’s method: x,,.; = x, — f'(x,)"1f (x,)

’

1




Newton’s method: x,,.; = x, — f'(x,)"1f (x,)

-1.1 -1.0
x =—1.1673039782614187

w/o Interval Arithmetic  f(¥) = —6.661338147750939 - 10~ 1°

w/ Interval Arithmetic /(%) € [-3.56-1071°,2.56 - 10~ 1°]




How to prove f(x) = 0

Define: Newton map

T(x)=x—f' ()" f(x) wfrmmn . T
Define: B,.(x), a closed ball ¢
about x of radius r

Goal: ShowthatT is a

contraction mapping:

— T maps B, (x) into itself

— points get closer together

Th’m: If T Is a contraction, then B,.(x)

contains a unique fixed point x ,
TxX)=x o f(Xx) =0 s

How to choose the right value of  ? '

- Too smalll

|
AN
— T T T




Newton’s method in higher dimensions

* There are complex roots to
fx)=x>—x+1
o If f:R™ - R" define Newton map
T(x) =x—=Df(x)~'f(x)
* Newton Fractal

— The colors represent basins of
attraction

— Black means Newton’s method did
not converge




Hard Part: co-dimensional problems

Poincare section of the Duffing equation
witha =1, =5, =0.02,y =8, w = 0.5.
Image Credit: Wikipedia

Consider the Duffing equation for a damped driven oscillator
+ + ax + = Yy cos wt

To look for 27 periodic solution (w = 1), expand x(t) as a Fourier

series
x(t) = Z a, et

KEL
where a_; = (ag)*. Inserting into the ODE, we obtain

Z( + ick + a)aie™t + =y (et +e7%)/2
kez

Matching the e'*t terms, we obtain equations Yk € Z

0=( + + a)a;, + — y61x/2

def

= fr(a)



Hard Part: co-dimensional problems

Poincare section of the Duffing equation
witha =1, =5, =0.02,y =8, w = 0.5.
Image Credit: Wikipedia

Theorem: A periodic orbit x(t) is
equivalent to a solution f(a) = 0
Define: Galerkin truncation
FN.R2N+1 , R2N+1
— Find approximate solution

a e RVt suchthat /' (a) = 0
Define: Quasi-Newton map on the
whole co-dimensional space

T(a) =a—Af(a),

A=Df(a) !

Goal: Show that T is a
contraction mapping*
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Incompressible Navier-Stokes equation

Hydrodynamic model of viscous u+w-Vyu+Vp=vAu

fluids V-u=20

— uis the velocity of the fluid

— pisthe pressure u ‘ = Up: R3 - R3
t=0

— E = [ |u|?is kinetic energy

Millennium Prize Problem
—  “If ugy is nice, will the solution blowup?”

Blowup in ordinary differential
equations

. dz
— Consider = = 72
dt

— 1If z(0) = z,, this has solution

() = —=2
? B 1-— Zot _2




Incompressible Navier-Stokes equation

Vorticity formulation we+WU-Vo=vAw+ (v -V)u
— Viscosity/ w=VXu
Diffusion W = w,: R3 N ]R3
— Vortex Stretching t=0
— Convection

— Incompressibility/
Nonlocality



Toy Models: Burgers, Fujita, etc

e Letu(t,x):|0,T) XR->R

us +uu, =0

U T UU, = Uyy

+ Lletv=1u, (or u= [vdx)

v, + v?
v, + uv, + v?
Ve — UV, + V?

Blow-up!

No blow-up

Blow-up!
No blow-up

Blow-up!

Viscosity alone is not
enough to suppress the
blow-up.

But perhaps blow-up can
be prevented by
viscosity and/or an
appropriate nonlinear
convection.

Hisashi Okamoto, 2018

“Some Navier-Stokes problems
which | cannot solve”




Vortex stretching: w - Vu

Usingw » Hw tomodel w =V X u —» Vu
Constantin-Lax-Majda (1985) proposed the
inviscid 1D equation

diw = w H(w)

The Hilbert transform

— H(w)x) = %p.v.

— Skew-symmetric: H?> = —Id

For z = Hw + iw we obtain complex diff. eq.

_ 1,2
0tz =52

— Blowup & z(x) € (0,+) for any x

Im(z) =V

20 = U?2 — 12
2V =2 UV

For z = U + i V, this yields the real ODE:

1.0¢

[}_5




Constantin-Lax-Majda type models

To incorporate convection and
dissipation, de Gregorio (1990),
proposed the following model
Wt + VW, = € Wyyy + WV,
v, = Hw

Model studied (and modified) by
many mathematicians

Neither convection nor dissipation
alone is sufficient to prevent blowup!

' For z = Hw + iw, the CLM equation can be

l . _ 1 2
Lwritten as zy = 5z
1

| Uy = e (u,, +u?)

T

0 Heat High Viscosity

Complex Ginzberg

o Landau

Med. Viscosity

/2 Nonlinear Schrodinger Eq No Viscosity
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Global dynamics of u, = i(A u + u?)

YnC
JJ, Lessard, Takayasu; Adv. Math (2022) \/\e eld C\‘
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Cartoon phase space of co-dimensional PDE dynamics



Global dynamics of u, = i(A u + u?)
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JJ, Lessard, Takayasu; Adv. Math (2022)
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Cartoon phase space of co-dimensional PDE dynamics



Global dynamics of u, = i(A u + u?)

SN
JJ, Lessard, Takayasu; Adv. Math (2022) \/\e elo i ‘
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Cartoon phase space of co-dimensional PDE dynamics



Global dynamics of u; = e'? (A u + u?)

e
JJ, Lessard, Takayasu; Adv. Math (2022) He%ﬁfb C\’
JJ; J. Dynam. Differential Equations (2022) Orbikﬁ

JJ, Lessard, Takayasu; Commun. __ N ]L N \
Nonlinear Sci. Numer. Simul. (2022) / O ITevin
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The NLS u; = i(A u + u?) is non-conservative

« Theorem: There exists an open set of Spatially constant dynamics z = iz*

vvvvvvvvvvvvvvvvvvvvv

homoclinics orbits (converging to 0 in 10} |
forward & backward time) | »\\ /f j
- Corollary: Any analytic conserved il ///\ @

quantity must be constant

— If F is continuous and conserved, then
F(u(®)) = F( lim u(t)) = F(0)

-0.5F \ 4

— F(ugy) must be constant on the open set of » | \\/ <
homoclinics | \/ ! \\\HJ i

— Constant on open set = globally constant tof * ﬁ

“““““““““““““

<®
o

for analytic functionals 1.0 05 0.0 05 1.0

JJ, Lessard, Takayasu; Adv. Math (2022)



Real Imaginary

* At least two families of equilibria 5 200l s
* Homogeneous nonlinearity 0 108
* Ifu(t,x) is asolution -20 100
then nu(n?t, nx) is a solution 0 0.5 1 0 0.5 1

* Computer Assisted Proof

Eigenvalues
e CastasaF(x) = 0 problemin .
Fourier space *
* Use Newton-Kantorovich method o
<
* Linearization about i is unstable 3 A A
e'?(h,, + 2ih) = Ah
g0l | | *
-8000 -6000 -4000 -2000 0 17.7—35.4i
Re ()\)

JJ, Lessard, Takayasu; Adv. Math (2022) Heat ¢ =0



Real Imaginary Eigenvalues

* At least two families of equilibria 5 e

* Homogeneous nonlinearity 0 8

* Ifu(t,x) is asolution -20 6000 - §
then nu(n?t, nx) is a solution 0 0.5 1

X

* Computer Assisted Proof 200 : " 4000 <

e CastasaF(x) = 0 problemin 100 X

Fourier space _108 X

. 2000 - x

* Use Newton-Kantorovich method 0 05 1 «

. . . ~ Im () X

* Linearization about i is unstable X

ip Y — c_)?e 2 o 20 *;O
€ (hxx + Zuh) Ah —35.4+17.;i ? Re ()
(&

s
JJ, Lessard, Takayasu; Adv. Math (2022) NLS ¢ — 5



Computer Assisted Proof Ezo 3
of Heteroclinic Orbits 3 //
S ,
a) Parameterization of 2
unstable manifold 0 0z o4 I
b) Validated integration of (a) (b) (©)
the initial value problem
c) Explicit trapping region 2 N Ty
of solutions converging  E— Izz
to the O solution B e ——— N
e !
I eeeeee—— o Im(u)
e 45
——
1— e
2_ =30

|
o
(o)}

|
o
H

|
o
N
o

0.2 0.4 0.6 0.8

JJ, Lessard, Takayasu; Adv. Math (2022)



Computer Assisted Proof
of Heteroclinic Orbhits

a) Parameterization of
unstable manifold

b) Validated integration of
the initial value problem

c) Explicit trapping region
of solutions converging
to the 0 solution

Cabré, Fontich & de la Llave, 2003
Reinhardt, & Mireles James, 2019
JJ, Lessard, Takayasu, 2022

- Look forachart P: D - W} .(X) such that
P(0)=% DP(0)=¢& ¢(t,P(0))=P(e*d)

« Write P as a power series:

P(O)=) pnb",  ppEX
n=0

 Solve for p,, order-by-order using the parameterization method



Real part Imaginary part

30 30

Computer Assisted Proof 28 20

of Heteroclinic Orbhits

Re(u)
I (u)

unstable manifold

b) Validated integration of e Vo> |
the initial value problem \\L///
0.5
c) Explicit trapping region | 04 06

of solutions converging | f
to the O solution

10
a) Parameterization of ‘

. Cyp-semigroup approach to validated integration
- Compute approximate solution d(t) to IVP
- Solve linearized problem about d(t)
- Show Picard-like operator is a contraction

Takayasu, et al., 2022
JJ, Lessard, Takayasu, 2022 . propagate errors



Spatially Constant Dynamics

Computer Assisted Proof
of Heteroclinic Orbits

a) Parameterization of
unstable manifold

b) Validated integration of
the initial value problem

c) Explicit trapping region
of solutions converging
to the O solution

1.0

0.
lla-=aoll

JJ, Lessard, Takayasu, 2022

Center dynamics of the
0-equilibrium
— Spatially constant solutions
have explicit solution z(t)~0(t™1)

Blowup coordinates about z(t)
— Make ansatz:

u(t) = z(t) + z(£)?1(¢t)
— The 1i(t) equation becomes:
itly = 1y, + z(t)%10?

— Suffices to show i(t) is bounded
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* The (strong) unstable
manifold has C dim. 1 Non-Validated Numerics

— Shoot out of different
angles i € St

N
N

(09
)
~~
N
[Ju(®)]]

N
S~
N

Angle at eigen vector 1
3

Figure for ¢ = 0 (Heat) eq.

JJ, Lessard, Takayasu, CNSNS (2022) X — inconclu?i[\:e / C.AI\.P. failed
no x — C.A.P. of heteroclinic!



U = ' (Uyy + Uu?)

H”(’)“ o

* For¢ € {0,m/4,7m/2} we have
computer assisted proofs of
many connecting orbits

* Theorem: Let ¢ € { n} cAP

— The unstable manifold of e
nontrivial equilibri %h@‘f@ @

unbounded traject&ry b h@w“ “’ 7 . -

JJ, Lessard, Takayasu, CNSNS (2022) Figures for ¢ = /4 (CGL) eq.



Theorem: The space of positive Fourier modes of the PDE iu; =A u + u?
on T% has two types of solutions: periodic and blowup

S I ——
- == -
p—— -
- -
- - -
- -

-
-
i

©° 07 ,e7 -7 [ Periodic

-
d-"—
-m-

- -
-
-
_______
------

_~. [IBlowUp

-
-
-,
-
---
_____
- -
--
......

Cartoon family of periodic solutions
limiting to blowup solutions

JJ; J. Dynam. Differential Equations (2022)

Theorem: Fix initial data uy(x) =
AL

* The solution is given as

u(t,x) = 2 a,(t) e™™

nENf
where the functions a,, are

21 periodic, and recursively
defined

1 :
e |If ZnENE} 1Vn| < 5 then u(t) is
bounded and 2 periodic




on T? has two types of solutions: periodic and blowup

Theorem: The space of positive Fourier modes of the PDE iu; =A u + u?

fd =1anda;, =0V k <0, then
él1=ia)2a1

a, = iw?2%a, —iaf

iw?3%a; — 2ia,a,

Q.
w
Il

a, = iw?4%a, —i(2aas + a?)

JJ; J. Dynam. Differential Equations (2022)

If we take monochromatic initial data
ug(x) = A e'®* then ...

e a,(t) = Aetw’t

_Az eziwzt e4iw2t
° aZ(t) - w2 _

2 2

P2
eSla) t

C . (t) B A3 e3iw2t +e9iw2t
3NHL T 4 6 4 12

a4_(t) == E - + + -

e 7e4iw2t e6iw2t esiwzt eloiwzt 11616iw2t
144 10 22 36 1440

)




Theorem: The space of positive Fourier modes of the PDE iu, =A u + u?

on T? has two types of solutions: periodic and blowup

ginary

Theorem: Consider the initial
data ug(x) = Ae™*
« If |A| < 3 then the solution is l

21 periodic

« If |A| = 6 then the solution /
blows up in finite time in the L?
norm, with T* < 2m /

 The solution exists for all time

(and is periodic) if and only if =3 /
Al < A . / -

JJ; J. Dynam. Differential Equations (2022)




Conclusions

* Summary
— Found new dynamics in
uy = e (A u+u?
* Equilibria, connecting orbits, periodic
orbits, blowup-solutions

— Developed new methodologies

 Take-home message

— Found singularities by
following the dynamics

— Computer assisted proofs
provide a canary in the coal mine

Cartoon phase space of o-dimensional PDE dynamics

w
)

-
N

Bl
=
~N

Angle at eigen vector 1y

0
0 0.05 0.1 0.15 0.2

t

(Left) Norm of solutions (Right) Cartoon drawing of
exiting the equilibrium’s unstable manifold
unstable manifold
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